The Head-Direction Signal Is Critical for Navigation Requiring a Cognitive Map but Not for Learning a Spatial Habit
نویسندگان
چکیده
Head-direction (HD) cells fire as a function of an animal's directional heading in the horizontal plane during two-dimensional navigational tasks [1]. The information from HD cells is used with place and grid cells to form a spatial representation (cognitive map) of the environment [2, 3]. Previous studies have shown that when rats are inverted (upside down), they have difficulty learning a task that requires them to find an escape hole from one of four entry points but that they can learn it when released from one or two start points [4]. Previous reports also indicate that the HD signal is disrupted when a rat is oriented upside down [5, 6]. Here we monitored HD cell activity in the two-entry-point version of the inverted task and when the rats were released from a novel start point. We found that despite the absence of direction-specific firing in HD cells when inverted, rats could successfully navigate to the escape hole when released from one of two familiar locations by using a habit-associated directional strategy. In the continued absence of normal HD cell activity, inverted rats failed to find the escape hole when started from a novel release point. The results suggest that the HD signal is critical for accurate navigation in situations that require a flexible allocentric cognitive mapping strategy, but not for situations that utilize habit-like associative spatial learning.
منابع مشابه
Head direction cell activity and behavior in a navigation task requiring a cognitive mapping strategy.
Head direction (HD) cells fire in relation to an animal's directional heading. To examine how these cells may be involved in spatial behavior, HD cells were recorded while animals performed a navigation task requiring the use of a cognitive mapping strategy. Results showed no relationship between performance on the task and the directional stability of the HD cell activity. The HD cell signal, ...
متن کاملAn Approach for Automatic Matching of Descriptive Addresses
Address matching (also called geocoding) is an applied spatial analysis which is frequently used in everyday life. Almost all desktop and web-based GIS environments are equipped with a module to match the addresses expressed in pre-defined standard formats on the map. It is an essential prerequisite for many of the functionalities provided by location-based services (e.g. car navigation). Sever...
متن کاملCognitive mappers to creatures of habit: differential engagement of place and response learning mechanisms predicts human navigational behavior.
Learning to navigate plays an integral role in the survival of humans and other animals. Research on human navigation has largely focused on how we deliberately map out our world. However, many of us also have experiences of navigating on "autopilot" or out of habit. Animal models have identified this cognitive mapping versus habit learning as two dissociable systems for learning a space--a hip...
متن کاملInvestigating the Effect of Music on Spatial Learning in a Virtual Reality Task
Background: Spatial learning and navigation is a fundamental cognitive ability consisting of multiple cognitive components. Despite intensive efforts conducted with the assistance of virtual reality technology and functional Magnetic Resonance Imaging (fMRI) modality, the music effect on this cognition and the involved neuronal mechanisms remain elusive. Objectives: We aimed to investigate the...
متن کاملThe vestibular contribution to the head direction signal and navigation
Spatial learning and navigation depend on neural representations of location and direction within the environment. These representations, encoded by place cells and head direction (HD) cells, respectively, are dominantly controlled by visual cues, but require input from the vestibular system. Vestibular signals play an important role in forming spatial representations in both visual and non-vis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013